

Name \qquad
Grade \qquad Teacher \qquad II UNIVERSITY of georgia
School \qquad
Water. Water. Everywhere 3
A Drop of Knowledge 4
Three States of Water 5
Water You Made of? 6
The Gallon Challenge 7
Hydrologists In Action 8

Did you know the Earth is about 71% water?

Yet, it's the same water that was around when the dinosaurs were. We cannot make any new water, so we have to take care of the water we have. People all around the world use water for drinking, gathering and growing food, transportation, recreation, and sustaining life. In order to learn how to conserve and protect our precious water resources, we need to learn more about water. So come with me, Arch the Dawg, and let's DIVE IN and learn more together!

Georgia 4-H is a partner in public

education and strives to incorporate Georgia Standards
in the educational materials produced for in-school use. The following Georgia Standards are correlated to the content delivery included in this publication:

S4CS2.a/S5CS2.a: Add, subtract, multiply, and divide whole numbers mentally, on paper, and with a calculator.

S4CS2.b/S5CS2.b: Use fractions and decimals, and translate between decimals and commonly encountered fractions - halves, thirds, fourths, fifths, and hundredths (but not sixths, sevenths, and so on) - in scientific calculations.

S4E3. Obtain, evaluate, and communicate information to demonstrate the water cycle.

S5P1. Obtain, evaluate, and communicate information to explain the differences between a physical change and a chemical change.
b. Construct an argument based on observations to support a claim that the physical changes in the state of water are due to temperature changes, which cause small particles that cannot be seen to move differently.

S6E3. Obtain, evaluate, and communicate information to recognize the significant role of water in Earth processes.

Georgia Standards from www.georgiastandards.org
Think Green! Not just 4-H Green...but let's help do our part to recycle and reuse. Save this book, reread it or pass it along to a friend. If it's too worn, please recycle it.

WATER, WATER, EVERYWHERE

Use your water smarts (and the words in the word bank) to fill in this water cycle!

The water cycle shows the process by which water moves between the earth's oceans and other bodies of water, atmosphere, and land. The sun provides the energy for the water cycle to occur.
(Rain \& Snow)

(Clouds)

Surface Runoff

THE WATER GYCLE

स3
 ADROP OF KNOWLEDGE

Not only do we drink water, but water is also used to produce and manufacture many common items we use and consume in our lives. Let's investigate how much water is needed for these items.

Assuming it takes approximately 2,000 gallons of water to
 produce one pound of beef, how much water does making a quarter-pound hamburger require?

List a few ways the water is used during the production of cotton shirts.

> Assuming it takes approximately 10 gallons of water to produce one slice of bread, how many gallons of water does it take to make a loaf of bread (20 slices)?

How many gallons of water are involved in making a pound beef patty on 2 slices of bread?

The numbers provided on this page are only estimates. It can be very difficult to come up with exact water use numbers. Some of the variability is explained by the different production techniques used in various places. Another factor is how far back in the production chain one begins to include water usage. Please be aware that there are many uncertainties when providing estimates of water use.

USGS Water Science for Schools, http://ga.water.usgs.gov/edu/sc1,html

Water is essential to life on Earth. How many different careers can you think of that involve water? In addition to food production and manufacturing, don't forget to think about protecting water, cleaning water, and making water available to all those who need it. List as many different careers as you can that involve water. If one career really interests you, ask an adult and do some research for more information about that career.

One water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is made up of 2 hydrogen atoms and 1 oxygen atom.

It is naturally found in three states of matter, determined by the temperature.

Use each word on the "thermometer" only one time to explore this interesting molecule.

${ }^{\circ} \mathrm{F}$ Vapor ${ }^{\circ} \mathrm{C}$ Steam 120 Stan - 50

Vaporization

Condensation
60 Liquid
40 Wet
Fluid
20 Water
0 Rain
-20 Solid
-40 Hard - 40
Cold
Ice
Snow

1. The three states of matter are \qquad
\qquad , and \qquad .
2. Solid water is called \qquad .
3. The liquid state is called \qquad .
4. Water as a gas is called \qquad or vapor.
5. Two physical properties of ice are \qquad and \qquad .
6. Liquid water is described as a and
\qquad .
7. Water is always present in the air as water \qquad .
8. Liquid precipitation is called \qquad .
9. \qquad forms when water vapor in the atmosphere freezes into ice crystals.
10. \qquad describes the transformation of water from a liquid state to a gas state.
11. \qquad describes the transformation of water in a gas state to a liquid state.

Of the 50+ project areas offered in 4-H Project Achievement, several are related to water including: Environmental Science, Freshwater Fish \& Shellfish, General Science, Geology, and Marine \& Coastal Ecology.

(8)
 WATERYOU MADE OF?

Let's think of ways to represent the water content of people and other things.

Water content of an average human is about 60\%.
How is that represented as a fraction? What does that look like on a pie chart?

Water content of an average tomato is about 94%.
How is that represented as a fraction?
What does that look like on a pie chart?

Water content of an average pizza is about 50%.
How is that represented as a fraction? What does that look like on a pie chart?

Water content of an average potato chip is about 2%. How is that represented as a fraction? \qquad
What does that look like on a pie chart?

TAKE THE 40 GALLON CHALLENGE!

Complete this pledge card today to join others in the 40 Gallon Challenge, where people are encouraged to reduce their water use by 40 gallons each day.

In addition to my existing water conservation practices or actions in the past, I pledge to:

L000	Daily Savings*	Check to Pledge
Run the dishwasher only when full	2 gallons	
Not leave water running while rinsing dishes	5 gallons	
Turn off water while brushing teeth (twice daily)	8 gallons	
Shorten showers by 2 minutes (once daily)	5 gallons	
Fill the bathtub half full while bathing	18 gallons	
Not use the toilet as a wastebasket (once daily)	2 gallons	
Wash only full loads of laundry and cut back by one load per week	5 gallons	
Fix a leaky faucet	15 gallons	
Fix a leaky toilet	30 gallons	
$00-0001$	Daily Savings*	Check to Pledge
Make a compost pile instead of using the garbage disposal	4 gallons	
Use a 55-gallon rain barrel to capture rain water for watering landscape or garden	5 gallons	
Use a broom instead of a hose to clean driveways and sidewalks (twice weekly)	22 gallons	
Water yard after midnight and before 10 a.m.	20 gallons	
Adjust sprinklers to reduce overspray onto sidewalks, driveways, etc.	20 gallons	
Add mulch (2-3 inches) around trees and plants (1000 sq ft)	25 gallons	
Use automatic car wash that recycles water instead of hand washing cars (weekly)	18 gallons	

*Actual water savings from these actions depends on a number of factors, including a household's water pressure, number of residents, age/ efficiency of plumbing devices, size of landscapes and irrigation systems, personal behaviors, etc. These daily estimates for an average household are provided solely as an educational guideline to help the public understand and appreciate the potential of these actions to help the region save water.

> TCTAL SAYINOS PLEDGED=

A hydrologist is a scientist who studies water. You try being a hydrologist and match up these words with their definition to learn more about water.

1. Dissolved Oxygen

2. Temperature
3. Non-Point

Source Pollution
4. pH
5. Groundwater
6. Erosion
7. Macroinvertebrates
8. Point Source

Pollution
9. Turbidity
10. Water Quality
A. A term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose
B. The wearing down or washing away of the soil and land surface by the action of water, wind, or ice
C. The amount of solid particles that are suspended in water and that determine how clear water is
D. Organisms that are visible to the naked eye and lack a backbone
E. Pollution discharged over a wide land area, not from one specific location; these are forms of diffuse pollution caused by sediment, nutrients, organic and toxic substances originating from land-use activities, which are carried to lakes and streams by surface runoff
F. Oxygen gas $\left(\mathrm{O}_{2}\right)$ dissolved in water
G. A measure of the relative acidity or alkalinity of water. Water with a pH of 7 is neutral; lower pH levels indicate increasing acidity, while pH levels higher than 7 indicate increasingly basic solutions
H. Water that infiltrates into the earth and is stored in usable amounts in the soil and rock below the earth's surface; water within the zone of saturation
I. The measure of the average kinetic energy of moving molecules within a substance
J. Water pollution coming from a single point, such as a sewage-outflow pipe

Sources: Water Science for Schools, http://ga.water.usgs.gov/edu/dictionary.html and The Water Sourcebook, http://water.epa.gov/learn/kids/drinkingwater/wsb_index.cfm

REFERENCESANDRESOURCES

compiled and woitten by= Melanie Biersmith, State 4-H Extension Faculty Adapted From the First Edition by: Peggy Adkins, State 4-H Extension Faculty
Reviewed by: Mandy B. Marable, State 4-H Extension Faculty; Gary Hawkins, CAES Water Resource Management and Policy Specialist \& Assistant Professor

Edited by: Tim Welsh, Bulldog Print + Design
Original Design and Layout by= Sam Pittard, formerly with Bulldog Print + Design
Arch Smith, Interim Associate Dean for Extension
Melanie M. Biersmith, State 4-H Leader/Director of 4-H
Nick Place, Dean and Director, College of Agricultural and Environmental Sciences

[^0]
[^0]: Published by University of Georgia Cooperative Extension. For more information or guidance, contact your local Extension office. The University of Georgia College of Agricultural and Environmental Sciences (working cooperatively with Fort Valley State University, the U.S. Department of Agriculture, and the counties of Georgia) offers its educational programs, assistance, and materials to all people without regard to race, color, religion, sex, national origin, disability, gender identity, sexual orientation or protected veteran status and is an Equal Opportunity, Affirmative Action organization.

